Advertisement

Green tea and the skin

  • Stephen Hsu
    Correspondence
    Reprint requests: Stephen Hsu, PhD, AD1443 School of Dentistry, Medical College of Georgia, Augusta, GA 30912-1126.
    Affiliations
    From the Department of Oral Biology and Maxillofacial Pathology, School of Dentistry, Medical College of Georgia
    Search for articles by this author
      Plant extracts have been widely used as topical applications for wound-healing, anti-aging, and disease treatments. Examples of these include ginkgo biloba, echinacea, ginseng, grape seed, green tea, lemon, lavender, rosemary, thuja, sarsaparilla, soy, prickly pear, sagebrush, jojoba, aloe vera, allantoin, feverwort, bloodroot, apache plume, and papaya. These plants share a common character: they all produce flavonoid compounds with phenolic structures. These phytochemicals are highly reactive with other compounds, such as reactive oxygen species and biologic macromolecules, to neutralize free radicals or initiate biological effects. A short list of phenolic phytochemicals with promising properties to benefit human health includes a group of polyphenol compounds, called catechins, found in green tea. This article summarizes the findings of studies using green tea polyphenols as chemopreventive, natural healing, and anti-aging agents for human skin, and discusses possible mechanisms of action.
      To read this article in full you will need to make a payment
      AAD Member Login
      AAD Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Preventing skin cancer, findings of the task force on community preventive services on reducing exposure to ultraviolet light.
        MMWR Morb Mortal Wkly Rep. 2003; 52: RR-15
        • Draelos Z.D.
        Botanicals as topical agents.
        Clin Dermatol. 2001; 19: 474-477
        • Chiu A.
        • Kimball A.B.
        Topical vitamins, minerals and botanical ingredients as modulators of environmental and chronological skin damage.
        Br J Dermatol. 2003; 149: 681-691
        • Ahmad N.
        • Mukhtar H.
        Cutaneous photochemoprotection by green tea: a brief review.
        Skin Pharmacol Appl Skin Physiol. 2001; 14: 69-76
        • Mukhtar H.
        • Katiyar S.K.
        • Agarwal R.
        Green tea and skin—anticarcinogenic effects.
        J Invest Dermatol. 1994; 102: 3-7
        • Stoner G.D.
        • Mukhtar H.
        Polyphenols as cancer chemopreventive agents.
        J Cell Biochem Suppl. 1995; 22: 169-180
        • Mukhtar H.
        • Ahmad N.
        Tea polyphenols: prevention of cancer and optimizing health.
        Am J Clin Nutr. 2000; 71: 1698S-1704S
        • Yang C.S.
        • Maliakal P.
        • Meng X.
        Inhibition of carcinogenesis by tea.
        Annu Rev Pharmacol Toxicol. 2002; 42: 25-54
        • Stratton S.P.
        • Dorr R.T.
        • Alberts D.S.
        The state-of-the-art in chemoprevention of skin cancer.
        Eur J Cancer. 2000; 36: 1292-1297
        • Katiyar S.K.
        • Ahmad N.
        • Mukhtar H.
        Green tea and skin.
        Arch Dermatol. 2000; 136: 989-994
        • Katiyar S.K.
        • Elmets C.A.
        Green tea polyphenolic antioxidants and skin photoprotection.
        Int J Oncol. 2001; 18 ([review]): 1307-1313
        • Hsu S.
        • Bollag W.B.
        • Lewis J.
        • Huang Q.
        • Singh B.
        • Sharawy M.
        • et al.
        Green tea polyphenols induce differentiation and proliferation in epidermal keratinocytes.
        J Pharmacol Exp Ther. 2003; 306: 29-34
        • Chung F.L.
        • Schwartz J.
        • Herzog C.R.
        • Yang Y.M.
        Tea and cancer prevention: studies in animals and humans.
        J Nutr. 2003; 133: 3268S-3274S
        • Kuroda Y.
        • Hara Y.
        Antimutagenic and anticarcinogenic activity of tea polyphenols.
        Mutat Res. 1999; 436: 69-97
        • Bushman J.L.
        Green tea and cancer in humans: a review of the literature.
        Nutr Cancer. 1998; 31: 151-159
        • Fujiki H.
        • Suganuma M.
        • Okabe S.
        • Sueoka E.
        • Suga K.
        • Imai K.
        • et al.
        Mechanistic findings of green tea as cancer preventive for humans.
        Proc Soc Exp Biol Med. 1999; 220: 225-228
        • American Cancer Society
        Cancer facts and figures 2002.
        American Cancer Society, Atlanta2002
        • Khan W.A.
        • Wang Z.Y.
        • Athar M.
        • Bickers D.R.
        • Mukhtar H.
        Inhibition of the skin tumorigenicity of (+/−)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene by tannic acid, green tea polyphenols and quercetin in Sencar mice.
        Cancer Lett. 1988; 42: 7-12
        • Wang Z.Y.
        • Khan W.A.
        • Bickers D.R.
        • Mukhtar H.
        Protection against polycyclic aromatic hydrocarbon-induced skin tumor initiation in mice by green tea polyphenols.
        Carcinogenesis. 1989; 10: 411-415
        • Ruch R.J.
        • Cheng S.J.
        • Klaunig J.E.
        Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea.
        Carcinogenesis. 1989; 10: 1003-1008
        • Katiyar S.K.
        • Agarwal R.
        • Wang Z.Y.
        • Bhatia A.K.
        • Mukhtar H.
        (−)-Epigallocatechin-3-gallate in Camellia sinensis leaves from Himalayan region of Sikkim: inhibitory effects against biochemical events and tumor initiation in Sencar mouse skin.
        Nutr Cancer. 1992; 18: 73-83
        • Wang Z.Y.
        • Agarwal R.
        • Bickers D.R.
        • Mukhtar H.
        Protection against ultraviolet B radiation-induced photocarcinogenesis in hairless mice by green tea polyphenols.
        Carcinogenesis. 1991; 12: 1527-1530
        • Mukhtar H.
        • Agarwal R.
        Skin cancer chemoprevention.
        J Investig Dermatol Symp Proc. 1996; 1: 209-214
        • Conney A.H.
        • Wang Z.Y.
        • Huang M.T.
        • Ho C.T.
        • Yang C.S.
        Inhibitory effect of green tea on tumorigenesis by chemicals and ultraviolet light.
        Prev Med. 1992; 21: 361-369
        • Wang Z.Y.
        • Huang M.T.
        • Ferraro T.
        • Wong C.Q.
        • Lou Y.R.
        • Reuhl K.
        • et al.
        Inhibitory effect of green tea in the drinking water on tumorigenesis by ultraviolet light and 12-O-tetradecanoylphorbol-13-acetate in the skin of SKH-1 mice.
        Cancer Res. 1992; 52: 1162-1170
        • Wang Z.Y.
        • Huang M.T.
        • Lou Y.R.
        • Xie J.G.
        • Reuhl K.R.
        • Newmark H.L.
        • et al.
        Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7,12-dimethylbenz[a]anthracene-initiated SKH-1 mice.
        Cancer Res. 1994; 54: 3428-3435
        • Conney A.H.
        • Lu Y.P.
        • Lou Y.R.
        • Huang M.T.
        Inhibitory effects of tea and caffeine on UV-induced carcinogenesis: relationship to enhanced apoptosis and decreased tissue fat.
        Eur J Cancer Prev. 2002; 11: S28-S36
        • Agarwal R.
        • Katiyar S.K.
        • Khan S.G.
        • Mukhtar H.
        Protection against ultraviolet B radiation-induced effects in the skin of SKH-1 hairless mice by a polyphenolic fraction isolated from green tea.
        Photochem Photobiol. 1993; 58: 695-700
        • Wang Z.Y.
        • Huang M.T.
        • Ho C.T.
        • Chang R.
        • Ma W.
        • Ferraro T.
        • et al.
        Inhibitory effect of green tea on the growth of established skin papillomas in mice.
        Cancer Res. 1992; 52: 6657-6665
        • Kundu J.K.
        • Na H.K.
        • Chun K.S.
        • Kim Y.K.
        • Lee S.J.
        • Lee S.S.
        • et al.
        Inhibition of phorbol ester-induced COX-2 expression by epigallocatechin gallate in mouse skin and cultured human mammary epithelial cells.
        J Nutr. 2003; 133: 3805S-3810S
        • Huang M.T.
        • Ho C.T.
        • Wang Z.Y.
        • Ferraro T.
        • Finnegan-Olive T.
        • Lou Y.R.
        • et al.
        Inhibitory effect of topical application of a green tea polyphenol fraction on tumor initiation and promotion in mouse skin.
        Carcinogenesis. 1992; 13: 947-954
        • Katiyar S.K.
        • Mohan R.R.
        • Agarwal R.
        • Mukhtar H.
        Protection against induction of mouse skin papillomas with low and high risk of conversion to malignancy by green tea polyphenols.
        Carcinogenesis. 1997; 18: 497-502
        • Agarwal R.
        • Katiyar S.K.
        • Zaidi S.I.
        • Mukhtar H.
        Inhibition of skin tumor promoter-caused induction of epidermal ornithine decarboxylase in SENCAR mice by polyphenolic fraction isolated from green tea and its individual epicatechin derivatives.
        Cancer Res. 1992; 52: 3582-3588
        • Vayalil P.K.
        • Elmets C.A.
        • Katiyar S.K.
        Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin.
        Carcinogenesis. 2003; 24: 927-936
        • Afaq F.
        • Ahmad N.
        • Mukhtar H.
        Suppression of UVB-induced phosphorylation of mitogen-activated protein kinases and nuclear factor kappa B by green tea polyphenol in SKH-1 hairless mice.
        Oncogene. 2003; 22: 9254-9264
        • Frei B.
        • Higdon J.V.
        Antioxidant activity of tea polyphenols in vivo: evidence from animal studies.
        J Nutr. 2003; 133: 3275S-3284S
        • Lu Y.P.
        • Lou Y.R.
        • Xie J.G.
        • Peng Q.Y.
        • Liao J.
        • Yang C.S.
        • et al.
        Topical applications of caffeine or (−)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice.
        Proc Natl Acad Sci U S A. 2002; 99: 12455-12460
        • Dvorakova K.
        • Dorr R.T.
        • Valcic S.
        • Timmermann B.
        • Alberts D.S.
        Pharmacokinetics of the green tea derivative, EGCG, by the topical route of administration in mouse and human skin.
        Cancer Chemother Pharmacol. 1999; 43: 331-335
        • Stratton S.P.
        • Bangert J.L.
        • Alberts D.S.
        • Dorr R.T.
        Dermal toxicity of topical (−) epigallocatechin-3-gallate in BALB/c and SKH1 mice.
        Cancer Lett. 2000; 158: 47-52
        • Chung J.H.
        • Han J.H.
        • Hwang E.J.
        • Seo J.Y.
        • Cho K.H.
        • Kim K.H.
        • et al.
        Dual mechanisms of green tea extract (EGCG)-induced cell survival in human epidermal keratinocytes.
        FASEB J. 2003; 17: 1913-1915
        • Elmets C.A.
        • Singh D.
        • Tubesing K.
        • Matsui M.
        • Katiyar S.
        • Mukhtar H.
        Cutaneous photoprotection from ultraviolet injury by green tea polyphenols.
        J Am Acad Dermatol. 2001; 44: 425-432
        • Katiyar S.K.
        • Matsui M.S.
        • Elmets C.A.
        • Mukhtar H.
        Polyphenolic antioxidant (−)-epigallocatechin-3-gallate from green tea reduces UVB-induced inflammatory responses and infiltration of leukocytes in human skin.
        Photochem Photobiol. 1999; 69: 148-153
        • Kostovic K.
        • Pasic A.
        Phototherapy of psoriasis: review and update.
        Acta Dermatovenerol Croat. 2004; 12: 42-50
        • Gasparro F.P.
        The role of PUVA in the treatment of psoriasis: photobiology issues related to skin-cancer incidence.
        Am J Clin Dermatol. 2000; 1: 337-348
        • Zhao J.F.
        • Zhang Y.J.
        • Jin X.H.
        • Athar M.
        • Santella R.M.
        • Bickers D.R.
        • et al.
        Green tea protects against psoralen plus ultraviolet A-induced photochemical damage to skin.
        J Invest Dermatol. 1999; 113: 1070-1075
        • Bickers D.R.
        • Athar M.
        Novel approaches to chemoprevention of skin cancer.
        J Dermatol. 2000; 27: 691-695
        • Kim S.H.
        • Kim S.R.
        • Lee H.J.
        • Oh H.
        • Ryu S.Y.
        • Lee Y.S.
        • et al.
        Apoptosis in growing hair follicles following gamma-irradiation and application for the evaluation of radioprotective agents.
        In Vivo. 2003; 17: 211-214
        • Einspahr J.G.
        • Bowden G.T.
        • Alberts D.S.
        Skin cancer chemoprevention: strategies to save our skin.
        Recent Results Cancer Res. 2003; 163 (discussion 264-6): 151-164
        • Linden K.G.
        • Carpenter P.M.
        • McLaren C.E.
        • Barr R.J.
        • Hite P.
        • Sun J.D.
        • et al.
        Chemoprevention of nonmelanoma skin cancer: experience with a polyphenol from green tea.
        Recent Results Cancer Res. 2003; 163 (discussion 264-6): 165-171
        • Ahmad N.
        • Feyes D.K.
        • Nieminen A.L.
        • Agarwal R.
        • Mukhtar H.
        Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells.
        J Natl Cancer Inst. 1997; 89: 1881-1886
        • Ahmad N.
        • Gupta S.
        • Mukhtar H.
        Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells.
        Arch Biochem Biophys. 2000; 376: 338-346
        • Afaq F.
        • Adhami V.M.
        • Ahmad N.
        • Mukhtar H.
        Inhibition of ultraviolet B-mediated activation of nuclear factor kappaB in normal human epidermal keratinocytes by green tea Constituent (−)-epigallocatechin-3-gallate.
        Oncogene. 2003; 22: 1035-1044
        • Nomura M.
        • Ma W.
        • Chen N.
        • Bode A.M.
        • Dong Z.
        Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced NF-kappaB activation by tea polyphenols, (−)-epigallocatechin gallate and theaflavins.
        Carcinogenesis. 2000; 21: 1885-1890
        • Barthelman M.
        • Bair III, W.B.
        • Stickland K.K.
        • Chen W.
        • Timmermann B.N.
        • Valcic S.
        • et al.
        (−)-Epigallocatechin-3-gallate inhibition of ultraviolet B-induced AP-1 activity.
        Carcinogenesis. 1998; 19: 2201-2204
        • Owuor E.D.
        • Kong A.N.
        Antioxidants and oxidants regulated signal transduction pathways.
        Biochem Pharmacol. 2002; 64: 765-770
        • Chen W.
        • Dong Z.
        • Valcic S.
        • Timmermann B.N.
        • Bowden G.T.
        Inhibition of ultraviolet B—induced c-fos gene expression and p38 mitogen-activated protein kinase activation by (−)-epigallocatechin gallate in a human keratinocyte cell line.
        Mol Carcinog. 1999; 24: 79-84
        • Hsu S.
        • Lewis J.B.
        • Borke J.L.
        • Singh B.
        • Dickinson D.P.
        • Caughman G.B.
        • et al.
        Chemopreventive effects of green tea polyphenols correlate with reversible induction of p57 expression.
        Anticancer Res. 2001; 21: 3743-3748
        • Chang T.S.
        • Kim M.J.
        • Ryoo K.
        • Park J.
        • Eom S.J.
        • Shim J.
        • et al.
        p57KIP2 modulates stress-activated signaling by inhibiting c-Jun NH2-terminal kinase/stress-activated protein kinase.
        J Biol Chem. 2003; 278: 48092-48098
        • Katiyar S.K.
        • Afaq F.
        • Azizuddin K.
        • Mukhtar H.
        Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (−)-epigallocatechin-3-gallate.
        Toxicol Appl Pharmacol. 2001; 176: 110-117
        • Yamamoto T.
        • Hsu S.
        • Lewis J.
        • Wataha J.
        • Dickinson D.
        • Singh B.
        • et al.
        Green tea polyphenol causes differential oxidative environments in tumor versus normal epithelial cells.
        J Pharmacol Exp Ther. 2003; 307: 230-236
        • Soriani M.
        • Rice-Evans C.
        • Tyrrell R.M.
        Modulation of the UVA activation of haem oxygenase, collagenase and cyclooxygenase gene expression by epigallocatechin in human skin cells.
        FEBS Lett. 1998; 439: 253-257
        • Fu Y.C.
        • Jin X.P.
        • Wei S.M.
        • Lin H.F.
        • Kacew S.
        Ultraviolet radiation and reactive oxygen generation as inducers of keratinocyte apoptosis: protective role of tea polyphenols.
        J Toxicol Environ Health A. 2000; 61: 177-188
        • Fu Y.C.
        • Jin X.P.
        • Wei S.M.
        The effects on cell growth of tea polyphenols acting as a strong anti-peroxidatant and an inhibitor of apoptosis in primary cultured rat skin cells.
        Biomed Environ Sci. 2000; 13: 170-179
        • Balasubramanian S.
        • Efimova T.
        • Eckert R.L.
        Green tea polyphenol stimulates a Ras, MEKK1, MEK3, and p38 cascade to increase activator protein 1 factor-dependent involucrin gene expression in normal human keratinocytes.
        J Biol Chem. 2002; 277: 1828-1836
        • Shaulian E.
        • Karin M.
        AP-1 in cell proliferation and survival.
        Oncogene. 2001; 20: 2390-2400
        • Hsu S.
        • Yu F.S.
        • Lewis J.
        • Singh B.
        • Borke J.
        • Osaki T.
        • et al.
        Induction of p57 is required for cell survival when exposed to green tea polyphenols.
        Anticancer Res. 2002; 22: 4115-4120
        • Wei H.
        • Zhang X.
        • Zhao J.F.
        • Wang Z.Y.
        • Bickers D.
        • Lebwohl M.
        Scavenging of hydrogen peroxide and inhibition of ultraviolet light-induced oxidative DNA damage by aqueous extracts from green and black teas.
        Free Radic Biol Med. 1999; 26: 1427-1435
        • Katiyar S.K.
        • Perez A.
        • Mukhtar H.
        Green tea polyphenol treatment to human skin prevents formation of ultraviolet light B-induced pyrimidine dimers in DNA.
        Clin Cancer Res. 2000; 6: 3864-3869
        • Katiyar S.K.
        • Afaq F.
        • Perez A.
        • Mukhtar H.
        Green tea polyphenol (−)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress.
        Carcinogenesis. 2001; 22: 287-294
        • Katiyar S.K.
        • Challa A.
        • McCormick T.S.
        • Cooper K.D.
        • Mukhtar H.
        Prevention of UVB-induced immunosuppression in mice by the green tea polyphenol (−)-epigallocatechin-3-gallate may be associated with alterations in IL-10 and IL-12 production.
        Carcinogenesis. 1999; 20: 2117-2124
        • Katiyar S.K.
        • Bergamo B.M.
        • Vyalil P.K.
        • Elmets C.A.
        Green tea polyphenols: DNA photodamage and photoimmunology.
        J Photochem Photobiol B. 2001; 65: 109-114
        • Trompezinski S.
        • Denis A.
        • Schmitt D.
        • Viac J.
        Comparative effects of polyphenols from green tea (EGCG) and soybean (genistein) on VEGF and IL-8 release from normal human keratinocytes stimulated with the proinflammatory cytokine TNFalpha.
        Arch Dermatol Res. 2003; 295: 112-116
        • Katiyar S.K.
        • Rupp C.O.
        • Korman N.J.
        • Agarwal R.
        • Mukhtar H.
        Inhibition of 12-O-tetradecanoylphorbol-13-acetate and other skin tumor-promoter-caused induction of epidermal interleukin-1 alpha mRNA and protein expression in SENCAR mice by green tea polyphenols.
        J Invest Dermatol. 1995; 105: 394-398
        • Kim J.
        • Hwang J.S.
        • Cho Y.K.
        • Han Y.
        • Jeon Y.J.
        • Yang K.H.
        Protective effects of (−)-epigallocatechin-3-gallate on UVA- and UVB-induced skin damage.
        Skin Pharmacol Appl Skin Physiol. 2001; 14: 11-19
        • Rutter K.
        • Sell D.R.
        • Fraser N.
        • Obrenovich M.
        • Zito M.
        • Starke-Reed P.
        • et al.
        Green tea extract suppresses the age-related increase in collagen crosslinking and fluorescent products in C57BL/6 mice.
        Int J Vitam Nutr Res. 2003; 73: 453-460
        • Bikle D.D.
        • Ng D.
        • Tu C.L.
        • Oda Y.
        • Xie Z.
        Calcium- and vitamin D-regulated keratinocyte differentiation.
        Mol Cell Endocrinol. 2001; 177: 161-171
        • Bollag W.B.
        • Bollag R.J.
        1,25-Dihydroxyvitamin D(3), phospholipase D and protein kinase C in keratinocyte differentiation.
        Mol Cell Endocrinol. 2001; 177: 173-182
        • Nickoloff B.J.
        • Qin J.Z.
        • Chaturvedi V.
        • Bacon P.
        • Panella J.
        • Denning M.F.
        Life and death signaling pathways contributing to skin cancer.
        J Investig Dermatol Symp Proc. 2002; 7: 27-35
        • Lippens S.
        • Kockx M.
        • Knaapen M.
        • Mortier L.
        • Polakowska R.
        • Verheyen A.
        • et al.
        Epidermal differentiation does not involve the proapoptotic executioner caspases, but is associated with caspase-14 induction and processing.
        Cell Death Differ. 2000; 7: 1218-1224
        • Madison K.C.
        Barrier function of the skin: “la raison d'etre” of the epidermis.
        J Invest Dermatol. 2003; 121: 231-241
        • Ahmad M.
        • Srinivasula S.M.
        • Hegde R.
        • Mukattash R.
        • Fernandes-Alnemri T.
        • Alnemri E.S.
        Identification and characterization of murine caspase-14, a new member of the caspase family.
        Cancer Res. 1998; 58: 5201-5205
        • Hu S.
        • Snipas S.J.
        • Vincenz C.
        • Salvesen G.
        • Dixit V.M.
        Caspase-14 is a novel developmentally regulated protease.
        J Biol Chem. 1998; 273: 29648-29653
        • Van de Craen M.
        • Van Loo G.
        • Pype S.
        • Van Criekinge W.
        • Van den brande I.
        • Molemans F.
        • et al.
        Identification of a new caspase homologue: caspase-14.
        Cell Death Differ. 1998; 5: 838-846
        • Pistritto G.
        • Jost M.
        • Srinivasula S.M.
        • Baffa R.
        • Poyet J.L.
        • Kari C.
        • et al.
        Expression and transcriptional regulation of caspase-14 in simple and complex epithelia.
        Cell Death Differ. 2002; 9: 995-1006
        • Eckhart L.
        • Ban J.
        • Fischer H.
        • Tschachler E.
        Caspase-14: analysis of gene structure and mRNA expression during keratinocyte differentiation.
        Biochem Biophys Res Commun. 2000; 277: 655-659
        • Rendl M.
        • Ban J.
        • Mrass P.
        • Mayer C.
        • Lengauer B.
        • Eckhart L.
        • et al.
        Caspase-14 expression by epidermal keratinocytes is regulated by retinoids in a differentiation-associated manner.
        J Invest Dermatol. 2002; 119: 1150-1155
        • Lippens S.
        • VandenBroecke C.
        • Van Damme E.
        • Tschachler E.
        • Vandenabeele P.
        • Declercq W.
        Caspase 14 is expressed in the epidermis, the choroid plexus, the retinal pigment epithelium and thymic Hassall's bodies.
        Cell Death Differ. 2003; 10: 257-259
        • Hsu S.
        • Yamamoto T.
        • Borke J.
        • Walsh D.S.
        • Singh B.
        • Rao S.
        • et al.
        Green tea polyphenol-induced epithelial cell terminal differentiation is associated with coordinated expression of p57/KIP2 and caspase 14.
        J Pharmacol Exp Ther. 2005; 312: 884-890
        • Walsh D.S.
        • Borke J.
        • Singh B.
        • Do N.
        • Hsu S.
        Psoriatic epidermal cells are characterized by altered expression of caspase 14, a novel protease regulating keratinocyte terminal differentiation and varrier formation.
        J Dermatol Sci. 2005; 37: 61-63
        • Proniuk S.
        • Liederer B.M.
        • Blanchard J.
        Preformulation study of epigallocatechin gallate, a promising antioxidant for topical skin cancer prevention.
        J Pharm Sci. 2002; 91: 111-116
        • Batchelder R.J.
        • Calder R.J.
        • Thomas C.P.
        • Heard C.M.
        In vitro transdermal delivery of the major catechins and caffeine from extract of Camellia sinensis.
        Int J Pharm. 2004; 283: 45-51